How to solve differential equations complete.

Author: mathematics teacher Zbigniew Jan Stebel

Find a solution to the equation:
(1) $3 y+e^{t}+(3 t+\cos y) \frac{d y}{d t}=0$

Method One:

In this case
$M(t, y)=3 y+e^{t}$,
$N(t, y)=3 t+\cos y$.
The equation is the total equation, because:
$\frac{\partial M}{\partial y}=3$
$\frac{\partial N}{\partial t}=3$,
so $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$.
Therefore, there is a function $\Phi(t, y)$ such that the conditions
i. $\quad \frac{\partial \Phi}{\partial t}=M(t, y)=3 y+e^{t}$
ii. $\frac{\partial \phi}{\partial y}=N(t, y)=3 t+\cos y$

Go to function $\Phi(t, y)$:

$$
\Phi(t, y)=\int\left(3 y+e^{t}\right) d t+h(y)=3 y t+e^{t}+h(y) .
$$

Differentiating terms of variable y and get:

$$
\frac{\partial \Phi}{\partial y}=3 t+h^{\prime}(y)
$$

Comparing the parties last equation to the equation (ii) we have:
$3 t+\cos (y)=3 t+h^{\prime}(y)$, so $h^{\prime}(y)=\cos (y) \Rightarrow h(y)=\sin (y)$,
hence we get

$$
\Phi(t, y)=3 y t+e^{t}+\sin (y) .
$$

The equation (1) has a solution

$$
3 y t+e^{t}+\sin (y)=C .
$$

Method Two:

If $N(t, y)=\frac{\partial \Phi}{\partial y}$ that course $\Phi(t, y)=\int N(t, y) d y+k(t)$.
Because $M(t, y)=\frac{\partial \Phi}{\partial t}=\int \frac{\partial N(t, y)}{\partial t} d y+k^{\prime}(t)$, Thus $k^{\prime}(t)$ it can be found from the equation:
$k^{\prime}(t)=M(t, y)-\int \frac{\partial N(t, y)}{\partial t} d y$.
Inserting the functions get:
$\Phi(t, y)=\int(3 t+\cos y) d y+k(t)=3 t y+\sin y+k(t)$.
Differentiating the variable t and taking into account the condition (i):
$3 y+k^{\prime}(t)=3 y+e^{t}$, hence $k(t)=e^{t}$.
Finally, we get:
$\Phi(t, y)=3 t y+\sin y+e^{t}$, that is, the same pattern as in the first method.
We have to resolve the issue of the original:
(2) $\left\{\begin{array}{c}4 t^{3} e^{t+y}+t^{4} e^{t+y}+2 t+\left(t^{4} e^{t+y}+2 y\right) \frac{d y}{d t}=0 \\ y(0)=1\end{array}\right.$

At the top mark the appropriate functions
$M(t, y)=4 t^{3} e^{t+y}+t^{4} e^{t+y}+2 t$,
$N(t, y)=t^{4} e^{t+y}+2 y$.
Is this a complete equation?
$\frac{\partial M}{\partial y}=\left(4 t^{3}+t^{4}\right) e^{t+y}$
$\frac{\partial N}{\partial t}=\left(4 t^{3}+t^{4}\right) e^{t+y}$,
that is, the equation is complete, because $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$.
There is a function of $\Phi(t, y)$ satisfying the conditions:
$\frac{\partial \Phi}{\partial t}=4 t^{3} e^{t+y}+t^{4} e^{t+y}+2 t$
$\frac{\partial \Phi}{\partial y}=t^{4} e^{t+y}+2 y$
It's easier to calculate the equation over another, thus taking advantage of this equation we get:
$\Phi(t, y)=t^{4} e^{t+y}+y^{2}+k(t)$.
Differentiating the last variable to the equation after t get:
$\frac{\partial \Phi}{\partial t}=\left(t^{4}+4 t^{3}\right) e^{t+y}+k^{\prime}(t)$.
Comparing with the condition receive the first equation of the form:
$k^{\prime}(t)=2 t \Rightarrow k(t)=t^{2}$.
Thus, a total solution:
$\Phi(t, y)=t^{4} e^{t+y}+y^{2}+t^{2}=C$, where $C-$ integration has become .
With the initial conditions, we know that $t=0, y=1 \Rightarrow C=1$.
We received a solution with the initial conditions:

$$
t^{4} e^{t+y}+y^{2}+t^{2}=1
$$

We have a differential equation:

$$
M(t, y)+N(t, y) \frac{d y}{d t}=0
$$

Which is not an absolute equation?
Can I turn them into a complete equation?
$\mu(t, y) M(t, y)+\mu(t, y) N(t, y) \frac{d y}{d t}=0(*)$
When this equation is the total equation?
$\frac{\partial}{\partial y}(\mu(t, y) M(t, y))=\frac{\partial}{\partial t}(\mu(t, y) N(t, y))$
\Downarrow
$M \frac{\partial \mu}{\partial y}+\mu \frac{\partial M}{\partial y}=N \frac{\partial \mu}{\partial t}+\mu \frac{\partial N}{\partial t}(* *)$
The equation $\left({ }^{*}\right)$ is the total equation and then only if the equation is satisfied $\left({ }^{* *}\right)$.

Definition

Feature μ satisfies the equation (**) is called a factor which is calculated over the equation (*).
Unfortunately, only in specific situations, we can solve the equation $(* *)$.
We know how to resolve them when the function μ is a function only argument t , or only argument y .
When $\mu(t, y)=\mu(t)$ then the equation $\left({ }^{* *)}\right.$ reduces to the equation:
$\mu \frac{\partial M}{\partial y}=N \frac{\partial \mu}{\partial t}+\mu \frac{\partial N}{\partial t} \Rightarrow N \frac{\partial \mu}{\partial t}=\mu\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right)$.
Therefore: $\frac{\partial \mu}{\partial t}=\frac{\mu\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right)}{N}$.
This equation makes sense when: $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}}{N}$) is a function only argument t , and therefore we can write:

$$
R(t)=\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}}{N}
$$

In this case we receive the order:

$$
\frac{\partial \mu}{\partial t}=\mu R(t) \Rightarrow \int \frac{d \mu}{\mu}=\int R(t) d t \Rightarrow \ln (\mu(t))=\int R(t) d t \Rightarrow \mu(t)=\exp \left(\int T=R(t) d t\right) .
$$

We received that: $\mu(t)=e^{\int R(t) d t}$.
The data is a differential equation:
(3) $\frac{y^{2}}{2}+2 y e^{t}+\left(y+e^{t}\right) \frac{d y}{d t}=0$.

Consider whether it is a complete differential equation?

$$
\text { Let } \begin{gathered}
M(t, y)=\frac{y^{2}}{2}+2 y e^{t}, \\
N(t, y)=y+e^{t} .
\end{gathered}
$$

Then $\left\{\begin{array}{c}\frac{\partial M}{\partial y}=y+2 e^{t} \\ \frac{\partial N}{\partial t}=e^{t},\end{array}\right.$ so $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$ therefore differential equation is not complete.
According to the algorithm, we have
$\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}}{N}=\frac{y+e^{t}}{y+e^{t}}=1=R(t)$, thence $\mu(t)=e^{\int 1 d t}=e^{t}$, is this factor.
So the equation of the form:
$\frac{y^{2}}{2} e^{t}+2 y e^{t}+\left(y e^{t}+e^{2 t}\right) \frac{d y}{d t}=0$
is an absolute equation.
We look for such functions $\Phi(t, y)$ that the conditions are met:
$\frac{\partial \Phi}{\partial t}=\frac{y^{2}}{2} e^{t}+2 y e^{2 t}$
$\frac{\partial \phi}{\partial y}=y e^{t}+e^{2 t}$.
We count on both sides of the integrated two equations, respectively terms of variable t and y :

$$
\begin{aligned}
& \Phi(t, y)=\frac{y^{2}}{2} e^{t}+y e^{2 t}+h(y) \\
& \Phi(t, y)=\frac{y^{2}}{2} e^{t}+y e^{2 t}+k(t)
\end{aligned}
$$

Comparing these parties to the equation, we see that $h(y)=0 \Leftrightarrow k(t)=0$.
Therefore, the solution of our equation is the form:
$\Phi(t, y)=\frac{y^{2}}{2} e^{t}+y e^{2 t}=C$.
Assume further that the
(4) $y(0)=1$.

Then we receive:
$\Phi(0,1)=\frac{1}{2} e^{0}+e^{0}=\frac{1}{2}+1=\frac{3}{2}=C$.
Ultimately, the solution differential equation (3) from the initial condition (4) is:
$\frac{y^{2}}{2} e^{t}+y e^{2 t}=\frac{3}{2}$.
Complete differential equations can also solve other alternative methods, for example, the method operators.

